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REIET vs. 3B E

- H=1EI0 vs. KBREE

%E,EU 1 def F2C(F):
N 2 C = (F-32)*5/9
é*ﬁ!’ S—_— %ﬁﬁﬁgﬁﬁ %{$ 3 return round(C,2)

v 00s

1 degree_F = 50
2 print(f'#EK{degree_F}EZERNHK{F2C(degree_F)}E")

v 0.0s

ERSoEEFREKL0.0E

1 degree_F = 78
2 print(f'#EK{degree_F}EERHK{F2C(degree_F)}E")

v 0.0s

ER7EZFRIEK25.56E

1 degree_F = 100 [ 4 )
2 print(f'#EK{degree_F}EFEMHRK{F2C(degree_F)}E")

v 0.0s

ER100EFNIEK37.78E



FRE=

- EREERERKE > E30%#ERE2

F =

O 00 NN OV b WN

R
N R ®

Cl =
C2 =

plt.
plt.
plt.
plt.
plt.
plt.

import matplotlib.pyplot as plt

list(range(0,221))
[ (f-32)*5/9 for f in F ] # 1AEAT
[ (f-30)/2 for f in F ] # KBgHE(E

plot(F, C1, 'r")

plot(F, C2, 'b")

xlabel('Degree F')

ylabel('Degree C')

legend([ "accurate’, 'approximated'])
show()

Degree C

100 1

80 A

60 A

20 A

— accurate
—— approximated

100
Degree F

T
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- IRRED vs. HREE
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IR REREUR

- HiE{H vs. BB

1 import matplotlib.pyplot as plt

2 import numpy as np

3 ® observations
A N = 300 # *;%215‘“3]% 1004 * theoretical values
5 F = np.random.rand(N)*210+10 # N 1@ 10~220H9% o)

6 # NEREE > S zero mean BISE std BIEEED M

7 std_ =5 o 601

8 Noises = (np.random.randn(N))*std_ o

9 CN = (F-32)*5/9 + Noises # ERZfE 3 ™
10 C = (F-32)*5/9 # E@® =

11

12 plt.plot(F, CN, 'bo") 0-

13 plt.plot(F, C, 'r*")

14 plt.legend([ 'observations', 'theoretical values']) R

plt.xlabel('Degree F') ° 50 IT;gmer 150 200
plt.ylabel('Degree C")
plt.show()

=
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AREIEI\ VS, 1EER

- IRRED vs. HREE

o | st - %
Bh —
[ P WRBE — KA ]

- jBEF 73 (Regression)

> KEARIEE THEREEEBENERE - TE8REA -

28

Degree C

0 50 100 150 200
Degree F
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M| vs. iz

- IRRED vs. HREE

® samples
100 4 ™= theoret_lcal line
— rRQression

Ziﬂuf : EmEREn L 2=

(&}
¢
g 40
o
20
ErR — _
Kf WReE [ 58 o
a5 T s
-204 ®
0 50 100 150 200

Degree F

> KEARIEE THEREEEBENERE - TE8REA -

JEER 4 % (R : LA b 1 print(5/9)
% E e reSSIOn) 2 A = np.ones((N,2),float) .
EFE]J ﬁ g 3 A[:,0] = F[:] 2 print(-32*5/9)
4 At = A.transpose() v 00s
5 w = np.dot(np.dot(np.linalg.inv(np.dot(At,A)),At),CN) 8.5555555555555556
6 print(w) -
v 00s -17.77777777777778

[ ©.55142486 -17.40811203]



#2222 Machine Learning
- REEIN vs. a8 Y
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Zfi_* BREARE — B8 [ MVEEX BRETIETHREEREE

§ (Supervised learning) FIFEESE 2 E (Unsupervised §

= leaming) - EERLBERBT A -
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- EHR(IFE) > BoRE
— Learning from Data




Learning from Data

- BEHEFRE (rules, patterns)

REBANEHFEEE, RERFOEENNSFRZE?

ORFTIFHEHRFTERHDT S
44+2=14
247=23
6+S =Y |

g+3=_]




Learning from Data

- BEHEFRE (rules, patterns)

REOANEETIEEE, RS eSS S e
DicsdTz32%RFERHITS
442=14
ORTIFHLHEFTERDITSE 24+7=23
G5 =4

4+2=14

A1) S R -
ChatGPT-5 Auto

2+7=23

35

EREAAE = (CEWMBIER) + (ZEMEET) -

o A4+2 = 4x2=8,4+2=68+6=14
o 2+7 = 2x7=14,2+7=9 14+9=23

' - s 6+5—6x5=306+5=1130+11=41
BTl 843 — 8x3=24 1 8+3=11 24+11=35-




Learning from Data

- KHEFRE (rules, patterns) R

DdTIFHHFERDITSE

REBANEHFEEE, RERFOEENNSFRZE? 4+2=14
2t7=23
6+5=41

ORI FHEARFTERHDITSE g+3=0J

q.+2 o) , L" Gemini 2.5 Pro FEEERERE

4 mrEm v

=
—— 8y ER—EFENEFIIEE o

BEFEREE: A+B=(AxB)+(A+B)

é +S vsecep: q , RPRBE—TEERE
S—
1. 4+2=(4x2)+(4+2)=8+6=14

2. 2+47=(2x7)+(2+7)=14+9=23

3. 6+5=(6x5)+(6+5)=30+1=41

-
-—— REEERE > RIVKHEB%E—S

e 8+3=(8x3)+(8+3)=24+11=35

FLL » AL BAEERBI B FEZZE 35 ©



Al - ML -~ DL
- ATEE(A) - #BBEML) - RELB(DL)

ATES  HRSERFRESE | ERAME
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Al - ML - DL

\

TEZAI - %28 (ML) - REZE(DL)

% 1. ALE= (Artificial Intelligence, Al)

ER
ATEZE—EAFRZHNERMEZEE » HZ 0 BR2RELEMBAE—REE « 85 « I8 « K
MREARRENE SHSNRR - Al EEREBKAESNRP  EHNERAENES

% 2. #4382 % (Machine Learning, ML)

EE

HBRBEALEZN—EZOFEE  EFEESEREERRABENRR > MEREMIEAEN
el ha® 188 - ERERREADNEE - IHETREINERR > i BEERERE
1TTRRIERER °

3. i#ESHE (Deep Learning, DL)

EE:

FEBLEEHSBREBV[EMPHN—ERESX » EZOEBEHFABRXEHSHEBRNGEEREERR B
7 HFREBRY T AT #EE4EEE (Artificial Neural Networks) ] © FrsB FRE ) @ 15N RS EMHEHERE
BHEEZE (FEMN) RIEE -

¥ Gemini




Roadmap & ith[E

- [E#RKEREE (Conventional Machine Learning)
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a2 B RIIEER

- BEEEI(EY (Supervised) vs. FEEENE

2ot

23 (Unsupervised)

Classification

>~
V

> Supervised leaming &

Machine learning '@

> Clustering

~& Unsupervised Ieammg «—

\4:» Regression
f
AW

Dimensionality reduction o AlNE_Mathzs
| * aPythonsas

LEEE

A [E 1.2 HaS2E 3 HE

e sERe R = uoIhg = =




Supervised Learning

- BEEARE > AERRERR SEEABRLSEHYEEIREREE
S BERSE  MESE EEER) h8Y

EEEH2E (Supervised Learning) EiiS2FEEPRZOERFRZEBANEHRZ— - EZOES
MEEMEIEESESY » REHE NEEER) NWHM » FEBRUPBEH A L H 2 005 FERS
% HWEABRARIHELNEES

ZOS - R MREER &7

EERBEMNERELGER TBE0MER (Labeled Data) - EEKERFIBKGIESMNE—F
Bl A3 TEASE (Input Features) MEHHBEMNER#E (Correct Output) » SELERE
B MBS TEE) (Label) 3¢ TBiZ) (Target) ©
B4R - MRER—ERHEERE R fER

- WARH® . —SRERBEIWNER -

- 17l SRERHENERSE B M#) 3% M-

BEBEDMABNRCER » PEHENBPERE ~ 802 - TARAFHERLNER - £63I8%E - SR
RHE—RMEY ~ KRB RBNEWE R B - RERAEIRFZF EINVHE - FRASRE R 2IHERH o



Supervised Learning

. EEREE S JIGE - BEE - ARE

Training Validataion Testing
10.0 10.0 10.0 ;
7.5 1 7.5 1 7.5
5.0 5.0 4 5.0
2.5 1 254 2.5 4 -
0.0 1 0.0 1 ¥ 00
-2.5 254 25
-5.0 _s.0 504
-7.5 1 751 -7.5 1
oo s S0 s oo 25 50 75 10 %0e 35 a0 s o'o 25 50 75 100 710‘210.0 75 -50 -25 00

2l (REE) B (1E) A ()




Unsupervised Learning
- FEEBENSRE > BR2BESH - Fif - £

-~ FFEENRE | BHESTRE BESR WBEPETHER

2 BREAEIET » TIEEEEREE ] (Unsupervised Learning) T=—@B AR5 |1 BERE
=ZWAE - HERE BRERBE ) SEASECHN MEEER) KETIGARE » FEEX2E
)Wt ke R 5 B T I R SRRSO Y B P R RS R AV EE1S « ETUFBAREE - & Gemini

9 C I u Ste ri n g (E—é ﬂ*:(E) 1:) | Data Distribution

HEERNTEREE
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SHNEEEZE
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Unsupervised Learning

- JEESETEEA Pros and Cons

— B85
. EEERIZN | YT ABATERKENRBMERE  LEEARRSIERNEEE
o BFRMUBESR | EHTERMEEEE AR - BB EILELERE » 171341

HIBRAR -
« BURTIRIE | EIEARERSVNAMESH > GIIBEEERMCUE  RBBH BRI
H o
> e

o SRMEEE : hi0fF TRELR) > HSFEEASBRENRMERILEEX28EAE
HME -
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o HBHER : F2EHEE (W K-Means) HNERERIVESYRTE (W K ERVERE) HBEE
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eakly Supervised Learning
BEENEE > REFEHR

ZH Zhou
National science review, 2018 - academic.oup.com

Abstract
Supervised learning techniques construct predictive models by learning from a large
number of training examples, where each training example has a /abel indicating its
ground-truth output. Though current techniques have achieved great success, it is
noteworthy that in many tasks it is difficult to get strong supervision information like fully

ground-truth labels due to the high cost of the data-labeling process. Thus, it is desirable
for machine-learning techniques to work with weak supervision. This article reviews some

SHOW MORE v

Yr Save P9 Cite Cited by 2388 | Related articles ~ All 11 versions

.

Figure 1. lllustration of three typical types of weak supervision. Bars denote feature vectors; red/blue marks labels; ?" implies that the label may be
inaccurate. Intermediate subgraphs depict some situations with mixed types of weak supervision.

Zhou, Zhi-Hua. "A brief introduction to weakly supervised learning." National science review 5, no. 1 (2018): 44-53.



Weakly Supervised Learning

- BUREREDITER

Labeled

Incomplete Supervision
Unlabeled

Inexact Supervision




Weakly Supervised Learning

 Inexact Supervision - Inaccurate Supervision

Labeled

Incomplete Supervision
Unlabeled

Inexact Supervision
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Deep Learning

. RESE

- AEBEEHREEN—(ERER - BEA—EHEA N REBHEREE , (Deep
Neural Networks) RUERZR1E - RICBEMNEIET BESE LA RREINELS
B - S UL FIER TR -

9 1. EEHBREEN—{EN X (A Subfield of Machine Learning):

o FESETREREHEENSEEMNSTELE  MEERERREN—EFEX - FEEN
ik A RESBTSEEEY  BUEMARBERMERESY -
2. EZOI AR NREMEHEIE) (Uses Deep Neural Networks):

- EEREESNERKZERARKE - cEFSETERN TAIWET) A TAMKERE
RIEE -

o TRE) ENnEeLREENHERE - HHRSUE—EaA - KB —EtEA
i RTIRR—ERDLER - EEEEIEENERE - RERENSBIZEPImEE
EEHRSES o

R B CISERE TEEMEISE5E) (Automated Feature Learning)

- EEFEREREGHBSERMENGS o MRS EREAEERFHEHUBEZME [ 27 )

RSP TI (B BRSBTS TAHA - TRES 950 -
. TRESEAEHEELRANS (PN—FERNEEY § > SHSTHRRLEEE
W - F—E TS R RRSES » SMES ARG 57  BEEAS
BEEEEAR—RE - SERR A » RN 4 Gemini




Learned Features

Handcrafted Features vs. Learned Features

Conventional Machine Learning

Gin |Gy - 37T

Input Feature extraction Classification Output

Deep Learning

Gy —

Input Feature extraction + Classification Output
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Classification Object Semantic Instance
+ Localization Detection
73 FEEBE U

Segmentation Segmentation

P {41538

GRASS, CAT, e
DOG, DOG, CAT Ee By DOG, DOG, CAT

HEE D D LR ] BRI MPRELE

“The best way to learn deep learning is to do deep learning.” — /anJ. Goodfellow



Image Classification

- Cats vs. Dogs

- Cats
a




Image Classification

- SEHEZLRIE (Convolutional Neural Networks, CNN)

- AlexNet

- ResNet

Imagenet classification with deep convolutional neural networks

A Krizhevsky, | Sutskever. .. - Advances in neural ..., 2012 - proceedings.neurips.cc

We trained a large, deep convolutional neural network to classify the 1.3 million high-
resolution images in the LSVRC-2010 ImageNet training set into the 1000 different classes.
On the test data, we achieved top-1 and top-5 error rates of 39 7% and 18.9\% which is
considerably better than the previous state-of-the-art results. The neural network, which has
60 million parameters and 500,000 neurons, consists of five convolutional layers, some of
which are followed by max-pooling layers, and two globally connected layers with a final ...
¥y Save Y Cite Cited by[148483] Related articles All 88 versions 99

Deep residual learning for image recognition

... Deeper neural networks are more difficult to train. We present a residual learning framework
to ease the training of networks that are substantially deeper than those used previously. ...

vr Save 99 Cite Cited by 289407 | Related articles All 53 versions 9




Image Classification

- SEHEZLRIE (Convolutional Neural Networks, CNN)
9 AleXNet AlexNet : S{RFEREEGNETHEHERR

AlexNet 2 RE2 BB AT —(EEE EEMERNERMLCMIR (Convolutional Neural Network,

CNN) © B7E )89 ImageNet AMUSRBABINEE (LSVRC) o » LUSBBE —BIVEA%

RE—SET > HIHENS T BERBARNHESMN > 1318 T ESNDEFRNEERRES -
—> ResNet  resnet azam) : @ rz msEmmaTEnEs RS

ResNet » 247 Residual Network (F#ZHIEE) > 24 AlexNet » VGG ~ GooglLeNet Z 18 » FRESR
BREBEREAENS —EEREM - ERMRENAIERAFIEREIEARERY » W1E g
FFHY ImageNet AFRIEIREHFIEIE (LSVRC) # - WBHEZRRTERYE - YRENNES
E=ATERENEE o

pit (AN 5L oh et Pretrained In-Sample Out-Sample
¢ B RIER ERIMAE
s | orsm
wom | oo




Visual Interpretability for Models!

- Top ranked features for detecting Cats

Big eyes and small
nose
957(1), 1739(2),
744(3), 1701(6),
327(8)

Tabby (narrow
stripes)
1354(4), 1817(7)

White whiskers
831(5)

Cat’s eyes
258(9),980(10)



Visual Interpretability for Models!

- Top ranked features for detecting Dogs

Face with big nose
850(1), 992(2),
1262(4), 145(6),
1972(8), 464(9)

Long limbs
1948(3)

Lop ears
1515(5)

Green grass
(co-occurrence)
1062(7)
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Da-Wen Lu

Image Classification

- BYHIR#H Glaucoma Inspection

ZERBRBRE—RBY REE
BXAREN NEE

EfERRERR 78 HRX
B BB RESNB ARG L

| B EERENENEERRE

- B¥ER (Glaucomatous)




Image Classification
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Fundus Analysis for Glaucoma
- IRERFE LIS EIRAE

SYEHR: #RE8LE (CDR) BK FEEHHR: MEELE (CDR) 8/




Visual Interpretability

- ERO]EEEH

— CAM (Class Activation Maps) Analysis

S ZIOI6)

<200

Class Activation Mapping

h ¢

Figure 2. Class Activation Mapping: the predicted class score is mapped back to the previous convolutional layer to generate the class
activation maps (CAMs). The CAM highlights the class-specific discriminative regions:

Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for discriminative localization.”
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929. 2016.

S

< Z2 00
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[ W, terrier
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V
of™
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Class
+ W, — Activation
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(Australian terrier)

Learning deep features for discriminative localization
B Zhou, A Khosla, A Lapedriza, A Oliva, A Torralba
Proceedings of the |EEE conference on computer vision and ..., 2016 - openaccess.thecvi.com

Abstract
In this work, we revisit the global average pooling layer proposed in [13], and shed light on
how it explicitly enables the convolutional neural network (CNN) to have remarkable
localization ability despite being trained on image-level labels. While this technique was
previously proposed as a means for regularizing training, we find that it actually builds a
generic localizable deep representation that exposes the implicit attention of CNNs on

\\\\\\ a DNeaenite the anparant eimnlicity of alohal averans naolinag we are ahla ta achiave

SHOW MORE

Yr Save 99 Cite Cited by[13929| Related articles All 20 versions 59



CAM Analysis

« CAM (Class Activation Maps) Analysis

9 » (#3478 . Learning Deep Features for Discriminative Localization

« {£& . Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
. BREF(H: 2016 (CVPR)
. OB

- =8

BREHT CAM (Class Activation Mapping) BISER: ¢

BT TSR TEERHEERNRE—ESHERER2ETIIME (Global Average
Pooling, GAP) * ZREKEERE{CZNE -

BEAN BB RT RS TR RN - AR RE -

Db ithF) ARG S EEL » 1] 7T FJ (Weakly-Supervised Object
Localization) » BENR AR EFEE A AT HYREHIIE -

- FIREM RESFHGCERSSERRER -
- BEESRE ! ®FHFMEE (PIMMYFesERIE) - BEEETMEL -

ERES

- ERRIEERNGHE | [RIGEY CAM HIEERERNEREHUES T —ERIFIOMhEE » SR T
HiERMEE - AAR2ERALERIRER -
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CAM Analysis

- Al %EUF':U%E%EE
> HHHEEOEAESHIEE

N_3_OD.bmp N_3_OD_neg.bmp N_3_OS.bmp N_3_0OS_neg.bmp

N_5_OS.bmp N_5_OS_neg.bmp N_6_OD.bmp N_6_OD_neg.bmp



CAM Analysis
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Thank you. Any Questions?
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Contact: wiewenhsu@nttu.edu.tw
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